Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana.
نویسندگان
چکیده
The proprotein precursors of storage proteins are post-translationally processed to produce their respective mature forms within the protein storage vacuoles of maturing seeds. To investigate the processing mechanism in vivo, we isolated Arabidopsis mutants that accumulate detectable amounts of the precursors of the storage proteins, 12 S globulins and 2 S albumins, in their seeds. All six mutants isolated have a defect in the beta VPE gene. VPE (vacuolar processing enzyme) is a cysteine proteinase with substrate specificity toward an asparagine residue. We further generated various mutants lacking different VPE isoforms: alpha VPE, beta VPE, and/or gamma VPE. More than 90% of VPE activity is abolished in the beta vpe-3 seeds, and no VPE activity is detected in the alpha vpe-1/beta vpe-3/gamma vpe-1 seeds. The triple mutant seeds accumulate no properly processed mature storage proteins. Instead, large amounts of storage protein precursors are found in the seeds of this mutant. In contrast to beta vpe-3 seeds, which accumulate both precursors and mature storage proteins, the other single (alpha vpe-1 and gamma vpe-1) and double (alpha vpe-1/gamma vpe-1) mutants accumulate no precursors in their seeds at all. Therefore, the vegetative VPEs, alpha VPE and gamma VPE, are not necessary for precursor processing in the presence of beta VPE, but partly compensates for the deficiency in beta VPE in beta vpe-3 seeds. In the absence of functional VPEs, a proportion of pro2S albumin molecules are alternatively cleaved by aspartic proteinase. This cleavage by aspartic proteinase is promoted by the initial processing of pro2S albumins by VPE. Our overall results suggest that seed-type beta VPE is most essential for the processing of storage proteins, and that the vegetative-type VPEs and aspartic proteinase complement beta VPE activity in this processing.
منابع مشابه
Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination.
Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we...
متن کاملRedundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases.
Seed-type vacuolar processing enzyme (VPE) activity is predicted to be essential for post-translational proteolysis of seed storage proteins in the protein storage vacuole of developing seeds. To test this hypothesis, we examined the protein profiles of developing and germinating seeds from Arabidopsis plants containing transposon-insertional knockout mutations in the genes that encode the two ...
متن کاملThe proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies.
We have investigated the transport of storage proteins, their processing proteases, and the Vacuolar Sorting Receptor-1/Epidermal Growth Factor Receptor-Like Protein1 (VSR-1/ATELP1) receptor during the formation of protein storage vacuoles in Arabidopsis thaliana embryos by means of high-pressure freezing/freeze substitution, electron tomography, immunolabeling techniques, and subcellular fract...
متن کاملThe Amborella vacuolar processing enzyme family
Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifyi...
متن کاملAnalyses of sorting nexins reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana.
Sorting nexins (SNXs) are conserved eukaryotic proteins that associate with three types of vacuolar protein sorting (VPS) proteins to form the retromer complex. How SNXs act in this complex and whether they might work independently of the retromer remains elusive. Here, we show by genetic and cell imaging approaches that the Arabidopsis thaliana SNX1 protein recruits SNX2 at the endosomal membr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 34 شماره
صفحات -
تاریخ انتشار 2003